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Goal

The goal of this talk is

1) to present
some interesting constructions of ”covering” lattices, and

2) to show
how the concepts of ”cover”, ”voltage graphs” and ”symmetry”,

apply to lattices and non-commutative lattices.
reveal unexpected connections between lattices and groups.
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Motivation

KNOWN

The concept of covering graphs, especially the technique of
voltage graphs (Gross, Tucker 1974), is a
useful tool for studying graphs, because

it reduces the study of a bigger ”covering structure” to the
study of a smaller ”base structure”;

NEW

since lattices may be regarded as partially ordered sets and
hence represented by directed graphs, it is natural to ask:

is it possible to apply this tool to lattices (and skew lattices,
too), and if so, how to do it?
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Covering graphs

In short, a covering graph Γ′ has locally the same structure
as the smaller base graph Γ: there is a ”natural projection”
(a local homeomorphism) p : Γ′ → Γ.
Such ”covers” may be either ”regular” or ”irregular”.

Example

Figure left: regular cover, figure right: irregular cover.

There are several covering graphs constructions; the most
elegant of them is the technique of voltage graphs.
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Voltage graphs < Γ, α > and derived graphs Γα

Definition

Let Γ be a directed graph and G a group.
Let α : E (Γ)→ G be the chosen assignment of voltages.

The (right) derived graph Γα of the base graph < Γ, α >, called
also the voltage graph, has the vertex set V (Γα) = V (Γ)×G and
the edge set E (Γα) = E (Γ)× G .

The set {va, a ∈ G} ⊂ V (Γα) is the fiber over v ∈ V (Γ) and
the set {ea, a ∈ G} ⊂ E (Γα) is the fiber over e ∈ E (Γ).

A directed edge e = (u, v) = u → v ∈ E (Γ) with an assigned
voltage b ∈ G ”lifts” to the fiber
{ea, a ∈ G} = {(ua, vab) = ua → vab, a ∈ G} in Γα.

The opposite edges (u, v) and (v , u) must have the inverse
voltages b and b−1.
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Example

In this ”double cover” the only ”non-zero voltage” is b = 1 ∈ Z2

u

v

b

ua

vab
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Net voltages of paths and cycles

Definition

The net voltage of a path a→ b → . . .m is just the product of
the voltages on these directed edges.

The net voltage of a cycle may depend on the choice of the
initial vertex, but its order is independent of this choice.
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Axioms of lattices (L,∧,∨)

Definition

A lattice [2] is a set L with with two binary operations ∧ and ∨
called meet and join satisfying pairs of idempotent, associative,
absorption and commutative identities (axioms):

a ∧ a = a a ∨ a = a
a ∧ (b ∧ c) = (a ∧ b) ∧ c a ∨ (b ∨ c) = (a ∨ b) ∨ c

a ∧ (a ∨ b) = a a ∨ (a ∧ b) = b
a ∧ b = b ∧ a a ∨ b = b ∨ a

a b

The idempotent relations follow from the other three.
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It is easy to obtain examples of lattices – just by ”drawing directed
planar curves” with the same initial and terminal point and taking
all their ”intersection points” as ”points of L”.

Example

In ”function lattices”, obtained from real-valued functions fi
defined on some interval I ⊂ R, for any pair of points A(c , fi(c))
and B(d , fj(d)) their ”join” C = A∨B and ”meet” D = A∧B are
defined as the ”closest intersection point on their right and left”.

B D

A
C
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Noncommutative lattices, skew lattice

In a noncommutative lattice only the idempotent, associative
and absorbtion identites hold.

The noncommutative lattices studied most extensively in recent
years are skew lattices [2] characterized by identities

x ∨ y = x if and only if x ∧ y = y
x ∨ y = y if and only if x ∧ y = x .
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Lattices as posets (L,≥)

The lattice axioms define a partial order on L

x ≥ y if and only if x ∧ y = y , or equivalently, x ∨ y = x .

Lattices may be thus represented by partially ordered sets (L,≥)
and hence by directed graphs.

But it is not true that every directed graph represents a lattice.
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Example

Which of the following directed graphs ”are” (represent) lattices?

A B C D E F
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Hint:

A directed graph Γ does not represent a lattice, if:

it is not connected

it contains a directed cycle a→ b → c · · · → a

it contains none or more than one maximal lower bound or
none or more than one minimal upper bound of some {a, b}.

A B C D E F
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a t b and a u b – generalizations of a ∨ b and a ∧ b

Definition

Let P be a poset. For any a, b ∈ P and for any A ⊂ P let us define
the following subsets of P:

A↑ = {x ∈ P, x ≥ a,∀a ∈ A} upper bounds

A↓ = {x ∈ P, x ≤ a,∀a ∈ A} lower bounds

Amax = {x ∈ A, x ≥ a, ∀a ∈ A} maximal elements

Amin = {x ∈ P, x ≤ a,∀a ∈ A} minimal elements

a t b = ({a, b}↑)min minimal upper bounds of {a, b}
a u b = ({a, b}↓)max maximal lower bounds of {a, b}



o

Introduction: motivation, basic notions Voltages on lattices Properties of lattices preserved by voltage constructions Symmetric lattices Conclusion and references

Which posets represent lattices?

Characterization of posets representing lattices.

Lattices are exactly those posets (L,≥) for which the cardinalities
of all these sets are one:

| a t b |=| a u b |= 1 for any a, b,∈ L

(and which satisfy the associativity condition).

If there is only one element in at b, then this element is a∨ b; it is
the infimum of all upper bounds of both a and b;
If there is only one element in au b, then this element is a∧ b; it is
the supremum of all lower bounds of both a and b.
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Structure of (finite) lattices

The simplest examples of (finite) lattices are unions of directed
paths Pni connecting the bottom vertex 0 and top vertex 1 with
no other common vertices; we denote them L = Pn1,n2,...,nm .

Example

In figure left we have P4,3,5.

All other lattices may be obtained from them by identifying some
of the vertices and edges of these maximal paths. The number m
of them we call the cut number c(Γ); the maximal length ni of
these walks is the height h(Γ). It is easy to see:

c(Γ)× h(Γ) ≥ cardinality of V (Γ).
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Example

The simplest nontrivial lattice, a diamond
D(a, b) = L(0 ≤ a, b ≤ 1) = {a, b}1

0 = P3,3 has cut number c = 2
and height h = 3. Here a ∨ b = 1 and a ∧ b = 0. Replacing each
directed edge with a copy of D we get its ”powers”
D2,D3, . . . ,Dn which are all lattices, too, and with cut number 2n.

D DD DDD

a b
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Example

The simplest nontrivial noncommutative lattice N = B(a, b, c , d)1
0

consists of a butterfly B(a, b, c , d) = {a, b ≤ c , d} and additional
top and bottom vertices 1 and 0. It has cut number 4 and height
4. It consists of 4 paths: (0,a,c,1), (0,a,d,1), (0,b,c,1), (0,b,d,1).

Here we can choose which of the points c or d will be a ∨ b and
which b ∨ a; likewise, we can choose, which of the points a or b
will be c ∧ b and which b ∧ a.

N ND DN NN

a b

c d
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Voltages on lattices

In order to get the idea for the ”right” definition of a ”covering
lattice” let us first consider the following question:

Question 1. What happens when we apply the voltage
construction to a directed graph Γ = Γ(L), representing a
lattice L?

L → Γ(L) → Γα(L)

Does the derived graph Γα(L) always represent a lattice?

Let us investigate this!
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Example

Let our base graph be the diamond Γ = D(c ≤ a, b ≤ d)
with voltages α ∈ G = Z2 = {0, 1} assigned to its arcs as follows:
voltage α = 0 to the blue arcs c → a and b → d
voltage α = 1 to the red arcs c → b and a→ d .
The derived graph Γα = D(c1 ≤ a1, b2 ≤ d2)∪D(c2 ≤ a2, b1 ≤ d1)
does not represent a lattice (there is no d1 ∨ d2; likewise, there is
no y ≤ c1, c2, hence there is no c1 ∧ c2).

So we have a problem! How to solve it?

a b

d

c

a1 b1

d1

c1

a2 b2

d2

c2

a3 b3

d5

c5

a4 b4

d6

c6

Γ
Γα
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Two options for how to get a lattice from the Γα

1. Add 0 and 1 to get (Γα)1
0

2. Identify all top and all bottom points to get (Γα)∗

a1 b1

d1

c1

a2 b2

d2

c2

a1 b1

d1

c1

a2b2

d2

c2
a1 b1 a2b2

(Γα)1
0 (Γα)∗
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Do our constructions always produce lattices from lattices?

Question 2. If L is a lattice, do the directed graphs (Γ(L)α)1
0

and (Γα)∗ always represent lattices, too?

Let us investigate this!
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Net voltage 1 ∈ Z2 on the directed cycle

Now let the only nonzero voltage be α(c , b) = 1 ∈ Z2:
Γ Γα

a b

d

c

a1 b1

d1

c1

a2 b2

d2

c2

a b

d

c

a1 b1

d1

c1

a2 b2

d2

c2

a3 b3

d5

c5

a4 b4

d6

c6
a b

d

c

a5 b3

d1

c1

a3 b5

d2

c2

a1 b2 a2 b1

(Γα)1
0 (Γα)∗

Now (Γα)1
0 is a skew lattice, and (Γα)∗ is a lattice.
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Voltages in Z3

a b

d

c

a3 b1

d1

c1

a5 b2

d2

c2

a7 b3

d3

c3

a b

d

c

a3 b1

d1

c1

a5 b2

d2

c2

a7 b3

d3

c3

Γ Γα (Γα)1
0

a b

d

c

a3 b1a5 b2
a7 b3

(Γα)∗

Here both (Γα)1
0 and (Γα)∗ are lattices. The same conclusion is

true if we take the voltage 1 ∈ Zn for any n ≥ 3. However, if we
take the voltage 1 ∈ Z , then the construction of (Γα)∗ is not
possible at all (since there are no maximal and no minimal vertices
in Γα).
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Which lattices ”lift” to lattices?

Question 3. Characterise those lattice graphs Γ which ”lift”
to Γα such that both (Γα)1

0 and (Γα)∗ are lattices.

To do this we need to refer to the concept of the net voltage [1]
of a path or a cycle in Γ: it is just the product of the voltages
along the path or a cycle. If the voltage group is commutative,
then the net voltage of the cycle is independent of the choice of
the initial vertex; otherwise, we get for the net voltage of a given
cycle various conjugate elements in G , but the important thing
here is that they all have the same order in the voltage group G .

Gross, Tucker 1987 [1]

If the order of the net voltage of the directed cycle C with length
m in the base graph Γ is k, then it lifts to Cα which is the union of
(| V (Γ) | × |G|)/k cycles of the length km.
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K., 2021

Let the base graph Γ = Γ(L) represent a lattice L and let the
voltages on its directed edges be taken from the group G .

Let the order k = k(C ) of the net voltage α(C ) ∈ G of any of the
directed cycles C in Γ be finite: (α(C ))k = id ∈ G .

If k(C ) 6= 2 for any directed cycle C = a↗ b ↘ a in Γ,
then the digraphs (Γα)1

0 and (Γα)∗ represent lattices, too;

a

b

a3

a1

b1

a2

b2
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Sketch of the proof.
Step 1. It is enough to show that Γα contains no butterflies
B = a↗ c ↘ b ↗ d ↘ a where a and b are not comparable and
c and d are not comparable and there is no e ∈ {a, b}↑ ∩ {c, d}↓.

This is so because:

Butterflies are characteristic for noncommutative lattices,
hence they are forbidden in lattices.

If there are no such B in Γα, then for any a, b ∈ Γα there is
only one minimal vertex x ∈ V (Γα) such that x ≥ a, x ≥ b
and this is then a ∨ b, and there is only one maximal vertex
y ∈ V (Γα) such that y ≤ a, y ≤ b and this is then a ∧ b.
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Step 2. The forbidden butterflies may arise in Γα only from:

the directed cycles C = a↗ b ↘ a in Γ with net voltage of
order 2 in the group G

a

b

a3

a1

b1

a2

b2

or from various forms of ”almost butterflies”
a↗ c ↘ b ↗ d ↘ a with net voltage of order 1 such as

a
b

c d

a5 b5

c5 d3

a8 b8

c8 d5

a
b

c
de

a1
b3

c3 d1e3

a2
b5

c5 d2e5

b

a

c

d

a3

b1

a1

c1

d1

b2

a2

c2

d2
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Step 3. But in all these cases we can find as a substructure a cycle
x ↗ y ↘ x with the net voltage 1 of order 2, which is explicitly
forbidden in the premises of our theorem.
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Both skew lattices and lattices may be derived from a base skew
lattice graph

Example

a b

c d

f

e

a1 b1

c1 d1

f1

e1

a2 b2

c2 d2

e2

a b

c d

f

e

a1 b1

c1 d1

f1

e1

a2 b2

c2 d2

e2
a b

c d

f

e

a1 b1

c1 d1

a2 b2

c2 d2

Γ Γα (Γα)1
0 (Γα)∗

Here we have: skew lattice base graph Γ(L) with butterfly
B(a↗ d ↘ b ↗ c ↘ a)
derived graph Γα and skew lattice graph (Γα))1

0 with butterfly
B(a1 ↗ d2 ↘ b2 ↘ e2 ↗ a2 ↗ d1 ↗ f1 ↘ c1 ↘ a1)
lattice graph (Γα)∗
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Comparison

K., 2021

If (Γα)1
0 is a lattice graph,

then (Γα)∗ is a lattice graph, too.

The opposite conclusion is not valid:
(Γα)∗ may be a lattice graph and (Γα)1

0 not (see Example 4).

Proof. There are no butterflies in (Γα)1
0 hence also no butterflies in

Γα. Can we obtain a butterfly by identifying the maximal vertices
in Γα?
No vertex of a buterfly may be equal to the maximal vertex of
(Γα)∗.
But ”below” this vertex everything in (Γα)∗ is the same as in Γα

where there are no butterflies.
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When do our voltage construction produce skew lattices?

The idea of the theorem and the proof is the same as for lattices:
It is enough that in Γα there are forbidden butterflies and that
there are no {a, b} such that at b or au b contains more than two
elements. These structure may be ”lifted” from Γ only from a few
forbidden voltage structures. It turns out that there are essentially
only three such forbidden structures, such as:

In the second and third case, there are some simple technical
conditions on voltages that have to be applied on these structures
if we want to obtain forbidden structure in Γα.
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Parameters or properties of lattices preserved by voltage
constructions

In transition from the lattice graph Γ = Γ(L) to the derived graph
Γα many parameters of the base lattice L are preserved, such as:

the height h(Γ) = h(Γα) – the longest path

the ratio c(Γ)
|V (Γ)| = c(Γα)

|V (Γα)| between the cut number and the
number of vertices

the density d = c(Γ)×h(Γ)
|V (Γ)| = c(Γα)×h(Γα)

|V (Γα)|

Here h(Γ) = 5, c(Γ) = 7, | V (Γ) |= 8 and d = 5×7
8 .
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Under the conditions of Theorem 1 the following properties of the
base lattice are preserved, too:

the ratio g(L)
|V (L)| = g(Γα(L))

|V (Γα(L))| where g is the number of
generators – such vertices that all the other vertices may be
expressed with them as their join a ∧ b or meet a ∨ b.

a b

d

c

a3 b1

d1

c1

a5 b2

d2

c2

a7 b3

d3

c3 a b c

Here the generators of Γ are the vertices a and b, and the
generators of Γα are their ”lifts” a1, b1, a2, b2, a3, b3.

the cancellation property: if a ∨ b = a ∨ c then b = c also
”lifts” from Γ(L) to Γα(L).
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Symmetries and automorphisms of (Γα)1
0 and (Γα)∗

represented as geometrical structures in some Rn

The existence theorems (e.g. Theorem 1 give necessary and
sufficient conditions for (Γα)1

0 and (Γα)∗ to be a lattice (or a
noncommutative lattice) in terms of forbidden minors in Γ.

Our constructions (Γα)1
0 and (Γα)∗ often produce graphs

which may be represented as geometric structures L (where
vertices = points, edges = line segments) embedded in
R2,R3, . . . ,Rn with various symmetries (i.e. isometries of Rn

preserving L); the corresponding symmetry group Sym(L)
depends on the dimension n of the ambiental space:
Sym2(L) E S†m3(L) · · ·E S†m\(L) . . . .

with many automorphisms (either ”lifted” from the base
graph Γ or ”new”); in general, the automorphism group may
be bigger than the symmetry group Aut(L) D S†m(L).
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Platonic lattices

Using other lifting techniques, e.g.

using fundamental domains and symmetry groups of various
surfaces,
flag graphs of polyhedra nad maps with inscribed copies of the
same directed graph

or using various iterative constructions with polyhedra etc. it is
possible to obtain lattices with the symmetry of any Platonic solid
(or any other polyhedron, or any surface, too):

v4 e6

f6
v e

f
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Polyhedral lattices

From each polyhedron we can get a lattice by choosing its ”south”
(0) or ”north” (1) pole, and directing all edges ”rise” from 0 to 1.
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Iteratively generated lattices

Polygons and polyhedra allow various iterative constructions of
lattices.

Example

Place 6 copies of the ”heagonal” or ”octahedral” lattice in each of
its vertices and connect them with the seventh copy touching all
the previous six. Continue to get a ”fractal” lattice ”planar” or
”spatial” lattice.
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Lattices and automorphisms

Using Cayley graphs Γ of any given group G it is possible to get
lattices L such that Aut(L) = G .
We just put on every edge of Γ two copies of the same lattice L
and then add minimal and maximal vertices 0 and 1.
In fact, this works for any graph Γ.
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Problem and result

I started this research after the first conference on noncommutative
structures in Portorož (2019) with a question, presented in [3]:

How to define ”voltage constructions on lattices” (to
obtain ”covering lattices” or ”covering skew lattices”)?
The original voltage construction, defined on (directed)
graphs, fails for lattices, because the derived graph Γα of the
base voltage graph Γ is never a lattice (since there are
multiple maximal and minimal vertices); therefore, some
adaptations of the original construction had to be made.

In this talk I have explained

how the technique of voltage graphs naturally leads to two
different covering constructions (Γα)1

0 and (Γα)∗ for
lattices.
when (under which necessary and sufficient conditions) the
base (voltage) graph Γ = Γ(L) (representing either a lattice
or a skew lattice) ”lifts” to a lattice (or to a skew lattice).
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Covering and voltage graphs

Some references:

The concept of covering graphs and voltage graphs is in detail
explained in [5], pp. 96–97.

They were first introduced in [1] for directed graphs, but they
may be applied also to undirected graphs, as in [6].

Lifting graph automorphisms from the base graph is explained
in [4].
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So we have seen that lattices are interesting not only as algebraic
objects but also as geometric objects.

Thank you!
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