Boundary theory and amenability: from Furstenberg's Poisson formula to boundaries of Drinfeld doubles of quantum groups

Sergey Neshveyev

(Joint work with Erik Habbestad and Lucas Hataishi)

UiO

June 24, 2021

S. Neshveyev (UiO)

ECM: MS OA (Zoom)

Let G be a locally compact group, μ a probability measure on G. Define

$$P_{\mu}(f)(g) = \int_{G} f(gh) d\mu(h),$$

$$H^{\infty}(G,\mu) = \{f \in L^{\infty}(G) \mid P_{\mu}(f) = f\}.$$

The latter is a commutative G-von Neumann algebra with product

$$f_1 \cdot f_2 = \lim_{n \to \infty} P^n_{\mu}(f_1 f_2)$$
 (pointwise convergence),

its spectrum is the **Poisson boundary** of G (or (G, μ)).

Remark. If *G* is a real semisimple Lie group, then for a large class of measures the harmonic functions are exactly the solutions of $\Delta f = 0$, where Δ is any left-invariant elliptic second order differential operator such that $\Delta 1 = 0$.

Let G be a locally compact group, μ a probability measure on G. Define

$$P_{\mu}(f)(g) = \int_{G} f(gh) d\mu(h),$$

$$H^{\infty}(G,\mu) = \{f \in L^{\infty}(G) \mid P_{\mu}(f) = f\}.$$

The latter is a commutative G-von Neumann algebra with product

$$f_1 \cdot f_2 = \lim_{n \to \infty} P^n_{\mu}(f_1 f_2)$$
 (pointwise convergence),

its spectrum is the **Poisson boundary** of G (or (G, μ)).

Remark. If G is a real semisimple Lie group, then for a large class of measures the harmonic functions are exactly the solutions of $\Delta f = 0$, where Δ is any left-invariant elliptic second order differential operator such that $\Delta 1 = 0$.

S. Neshveyev (UiO)

Assume G acts on a probability space (X, v). The measure v is called μ -stationary if

$$\mu * \nu = \nu$$
.

Given such a measure, we have a map

$$\mathscr{P}_{\nu}: L^{\infty}(X,\nu) \to H^{\infty}(G,\mu), \quad \mathscr{P}_{\nu}(f)(g) = \int_{X} f(gx) d\nu(x).$$

Computing the Poisson boundary is equivalent to finding (X, v) such that \mathscr{P}_v is a (complete) order isomorphism.

Assume now that G is a connected real semisimple Lie group with finite center, $K \subset G$ a maximal compact subgroup, and μ is a left K-invariant absolutely continuous measure such that supp μ^{*n} contains a neighbourhood of the identity for some $n \ge 1$.

Theorem (Furstenberg)

The Poisson boundary of (G, μ) is (G/H(G), m), where H(G) is a unique up to conjugacy maximal cocompact amenable subgroup of G and m is the unique K-invariant probability measure.

Consider the Iwasawa decomposition G = KAN.

Moore: we can take

$$H(G) = N_G(AN) = Z_K(A)AN.$$

Examples

1)
$$G = SL_2(\mathbb{R}), \ K = SO_2(\mathbb{R}), \ AN = \{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} : a > 0 \},$$

 $H(G) = \{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} : a \neq 0 \}.$

Then $G/K \cong \mathbb{H}$, $G/H(G) \cong \mathbb{R} \cup \{\infty\}$ and Furstenberg's theorem gives the usual Poisson formula for \mathbb{H} .

2)
$$G = SL_2(\mathbb{C}), K = SU(2), AN = \{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} : a > 0 \},$$

$$H(G) = \left\{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} : a \neq 0 \right\} = P.$$

We have $G = K_{\mathbb{C}}$, the boundary of G is $G/P = SU(2)/\mathbb{T} \cong S^2$

S. Neshveyev (UiO)

ECM: MS OA (Zoom)

Examples

1)
$$G = SL_2(\mathbb{R}), \ K = SO_2(\mathbb{R}), \ AN = \{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} : a > 0 \},$$

 $H(G) = \{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} : a \neq 0 \}.$

Then $G/K \cong \mathbb{H}$, $G/H(G) \cong \mathbb{R} \cup \{\infty\}$ and Furstenberg's theorem gives the usual Poisson formula for \mathbb{H} .

2)
$$G = SL_2(\mathbb{C}), K = SU(2), AN = \{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} : a > 0 \},$$

$$H(G) = \left\{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} : a \neq 0 \right\} = P.$$

We have $G = K_{\mathbb{C}}$, the boundary of G is $G/P = SU(2)/\mathbb{T} \cong S^2$.

S. Neshveyev (UiO)

An action of G on a compact space X is called **strongly proximal** if \overline{Gv} contains a point mass for any probability measure v. If the action is in addition minimal, then it is called a **boundary action**.

For any locally compact group G there is a universal boundary action $G \curvearrowright \partial_F G$, $\partial_F G$ is called the **Furstenberg boundary** of G.

Furstenberg's proof of the Poisson formula for G = KAN consists of two major parts:

1) $\partial_F G = G/H(G)$, used to prove injectivity of the Poisson integral

$$\mathscr{P}_{v}: L^{\infty}(G/H(G), m) \to H^{\infty}(G, \mu);$$

2) $H^{\infty}(G,\mu)^{K} = \mathbb{C}1$, used to prove surjectivity.

A unital G-C*-algebra A is called G-injective if, given unital G-C*-algebras B and C, a completely isometric G-equivariant ucp map $B \rightarrow C$ and a G-equivariant ucp map $B \rightarrow A$, there is a G-equivariant ucp map $C \rightarrow A$ making the diagram

commutative.

Theorem (Hamana, Kalantar-Kennedy)

For any discrete group G, $C(\partial_F G)$ is the injective envelope of \mathbb{C} , that is, it is G-injective and every G-equivariant ucp map $C(\partial_F G) \rightarrow A$ is completely isometric.

Assume G is a locally compact quantum group, ϕ a normal state on $L^{\infty}(G)$. Define

$$P_{\phi} \colon L^{\infty}(G) \to L^{\infty}(G), \quad P_{\phi}(x) = (\phi \otimes \iota)\Delta(x),$$
$$H^{\infty}(G,\phi) = \{f \in L^{\infty}(G) \mid P_{\phi}(x) = x\}.$$

Izumi: the latter is a (right) *G*-von Neumann algebra with product $x \cdot y = s - \lim_{n \to \infty} P_{\phi}^{n}(xy)$.

If $G=\widehat{K}$ for a compact quantum group K, then

$$L^{\infty}(G) = W^{*}(K) = \ell^{\infty} - \bigoplus_{s \in \operatorname{Irr}(K)} B(H_{s}).$$

Particularly interested in the (right) (Ad K)-invariant normal states ϕ_{μ} , where μ is a probability measure on Irr(K), $W^*(K)^{\text{Ad}K} = \ell^{\infty}(\text{Irr}(K))$.

Assume G is a locally compact quantum group, ϕ a normal state on $L^{\infty}(G)$. Define

$$P_{\phi} \colon L^{\infty}(G) \to L^{\infty}(G), \quad P_{\phi}(x) = (\phi \otimes \iota)\Delta(x),$$
$$H^{\infty}(G,\phi) = \{f \in L^{\infty}(G) \mid P_{\phi}(x) = x\}.$$

Izumi: the latter is a (right) *G*-von Neumann algebra with product $x \cdot y = s - \lim_{n \to \infty} P_{\phi}^{n}(xy)$.

If $G = \widehat{K}$ for a compact quantum group K, then

$$L^{\infty}(G) = W^{*}(K) = \ell^{\infty} - \bigoplus_{s \in \operatorname{Irr}(K)} B(H_{s}).$$

Particularly interested in the (right) (Ad K)-invariant normal states ϕ_{μ} , where μ is a probability measure on Irr(K), $W^*(K)^{\text{Ad }K} = \ell^{\infty}(\text{Irr}(K))$.

Let K be a compact connected semisimple Lie group, $T \subset K$ a maximal torus, K_q the q-deformation of K (0 < q < 1).

The Poisson boundary of \widehat{K}_q for any generating probability measure μ on $\operatorname{Irr}(K)$ is

Izumi: $SU_q(2)/\mathbb{T} \cong S_q^2$ for K = SU(2);

Izumi-N-Tuset: $SU_q(n)/T$ for K = SU(n) $(n \ge 2)$;

Tomatsu: K_q/T for general K.

Remark. For q = 1, the Poisson boundary of \widehat{K} is trivial (Biane).

Let K be a compact connected semisimple Lie group, $T \subset K$ a maximal torus, K_q the q-deformation of K (0 < q < 1).

The Poisson boundary of \widehat{K}_q for any generating probability measure μ on $\operatorname{Irr}(K)$ is

Izumi: $SU_q(2)/\mathbb{T} \cong S_q^2$ for K = SU(2);

Izumi-N-Tuset: $SU_q(n)/T$ for K = SU(n) $(n \ge 2)$;

Tomatsu: K_q/T for general K.

Remark. For q = 1, the Poisson boundary of \hat{K} is trivial (Biane).

For any compact quantum group K, we can define its **Drinfeld double**

$$D(K) = {}^{``}K\widehat{K}^{\operatorname{op''}}, \quad L^{\infty}(D(K)) = L^{\infty}(K)\overline{\otimes}\ell^{\infty}(\widehat{K}) = L^{\infty}(K)\overline{\otimes}W^{*}(K).$$

For compact semisimple Lie groups, $D(K_q)$ is a quantum analogue of $K_{\mathbb{C}}$ (Drinfeld, Pusz-Woronowicz,..., De Commer-Floré, Monk-Voigt).

(*Remark.* For genuine compact groups, $C^*(D(K)) \cong C(K) \rtimes_{Ad} K$.)

Proposition

For any compact quantum group K and any probability measure μ on Irr(K), we have a canonical D(K)-equivariant isomorphism

 $H^{\infty}(D(K)^{\operatorname{op}}, h \otimes \phi_{\mu}) \cong H^{\infty}(\widehat{K}, \mu),$

where h is the Haar state on $L^\infty(K).$

3

イロン イロン イヨン イヨン

For any compact quantum group K, we can define its **Drinfeld double**

$$D(K) = {}^{"}K\widehat{K}^{\operatorname{op"}}, \quad L^{\infty}(D(K)) = L^{\infty}(K)\overline{\otimes}\ell^{\infty}(\widehat{K}) = L^{\infty}(K)\overline{\otimes}W^{*}(K).$$

For compact semisimple Lie groups, $D(K_q)$ is a quantum analogue of $K_{\mathbb{C}}$ (Drinfeld, Pusz-Woronowicz,..., De Commer-Floré, Monk-Voigt).

(*Remark.* For genuine compact groups, $C^*(D(K)) \cong C(K) \rtimes_{Ad} K$.)

Proposition

For any compact quantum group K and any probability measure μ on Irr(K), we have a canonical D(K)-equivariant isomorphism

$$H^{\infty}(D(K)^{\operatorname{op}}, h \otimes \phi_{\mu}) \cong H^{\infty}(\widehat{K}, \mu),$$

where h is the Haar state on $L^{\infty}(K)$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

Amenability

For a compact quantum group K, consider a dimension function d on Rep K $(d \ge 0, d \ne 0)$:

 $d(U \oplus V) = d(U) + d(V), \qquad d(U \otimes V) = d(U)d(V).$

For every f.d. representation U consider the matrix

 $\Gamma_U = (\dim \operatorname{Hom}_{K}(U_s, U \otimes U_t))_{s,t \in \operatorname{Irr}(K)}.$

The dimension function *d* is called **amenable** if

 $\|\Gamma_U\|_{\ell^2(\operatorname{Irr}(K))} = d(U) \quad \text{for all} \quad U,$

equivalently, there are almost $d(U)^{-1}\Gamma_U$ -invariant vectors in $\ell^2(\operatorname{Irr}({\mathcal K})).$

The dimension function d is called **weakly amenable** if there are almost $d(U)^{-1}d\Gamma_U d^{-1}$ -invariant nonnegative vectors in $\ell^1(\operatorname{Irr}(K))$.

御下 不至下 不至下 二百

Amenability

For a compact quantum group K, consider a dimension function d on Rep K $(d \ge 0, d \ne 0)$:

 $d(U \oplus V) = d(U) + d(V), \qquad d(U \otimes V) = d(U)d(V).$

For every f.d. representation U consider the matrix

$$\Gamma_U = (\dim \operatorname{Hom}_{K}(U_s, U \otimes U_t))_{s, t \in \operatorname{Irr}(K)}.$$

The dimension function *d* is called **amenable** if

$$\|\Gamma_U\|_{\ell^2(\operatorname{Irr}(K))} = d(U) \quad \text{for all} \quad U,$$

equivalently, there are almost $d(U)^{-1}\Gamma_U$ -invariant vectors in $\ell^2(\operatorname{Irr}(\mathcal{K}))$.

The dimension function d is called **weakly amenable** if there are almost $d(U)^{-1}d\Gamma_U d^{-1}$ -invariant nonnegative vectors in $\ell^1(\operatorname{Irr}(K))$.

There are two natural dimension functions on Rep K - classical dimension dim U and quantum dimension dim_q U. They coincide if and only if K is of Kac type ($S^2 = id$).

The classical dimension function is amenable if and only if there is a state on $\ell^{\infty}(\widehat{K})$ that is P_{ϕ} -invariant for all normal states ϕ on $\ell^{\infty}(\widehat{K}) = W^{*}(K)$. In this case \widehat{K} is called amenable.

The quantum dimension function is weakly amenable if and only if there is a state on $\ell^{\infty}(\operatorname{Irr}(K))$ that is P_{μ} -invariant for all probability measures μ on $\operatorname{Irr}(K)$.

Theorem (Tomatsu)

Assume K is a compact quantum group with commutative fusion rules, countable Irr(K) and amenable classical dimension function (so the discrete quantum group \hat{K} is amenable). Let $H \subset K$ be the largest closed quantum subgroup of Kac type. Then

$$H^{\infty}(\widehat{K},\mu)\cong L^{\infty}(K/H)$$

for any generating probability measure μ on Irr(K).

An important ingredient of the proof is the property

$$H^{\infty}(\widehat{K},\mu)^{K} = \mathbb{C}1,$$

which was proved by Hayashi.

Theorem (N-Yamashita, Habbestad-Hataishi-N)

Assume K is a compact quantum group with weakly amenable quantum dimension function. Then there is a noncommutative D(K)-space $\partial_{\Pi} \hat{K}$ such that

the action of K on ∂_Π K̂ is ergodic, C(∂_ΠK) is braided-commutative, and the dimension function defined by C(∂_ΠK) on Rep K is amenable;
C(∂_ΠK) is an initial object in the category of D(K)-algebras as in (1). Furthermore, if m is the unique K-invariant state on C(∂_Π K̂), then 𝒫_m is a complete order isomorphism of L[∞](∂_Π K̂, m) onto

$$H^{\infty}(\widehat{K}) := \{ x \in \ell^{\infty}(\widehat{K}) \mid P_{\mu}(x) = x \text{ for all } \mu \}.$$

Theorem

Assume K is a compact quantum group with weakly amenable quantum dimension function. Then $\partial_{\Pi} \hat{K}$ is the Furstenberg-Hamana boundary of D(K), that is, $C(\partial_{\Pi} \hat{K})$ is the D(K)-injective envelope of \mathbb{C} .

In particular, if K is a compact connected semisimple Lie group with a fixed maximal torus T, then, for all 0 < q < 1, the Furstenberg-Hamana boundary of $D(K_q)$ is K_q/T .